
Math 564: Real analysis and measure theory
Lecture 1

Motivation for measure theory.

Probability. We understand well the probability theory ofa vointesses
,

where the probability
of 1 is pel0 , i and of O is lop.

⑭...

Then for each word wel" = 20, 13", the probability of poin tosses resulting in w is

IPp(w) = pHotsinw) . (l-plHoTOsinw)
What if n = d ? In other words

,
we consider the space 2 = 30, 13 of infinite binary

sequences ,
with the same probabilities of tossing , or 0

.
Then how do we define

the probability of "events" in this space ?

Geometry
.

We would like he have a robust notion of volume in IRA
,
dal

,
i
.
e
. we

would like to determine the volume of a large class of subsets on 1R9. We know

what the volume of a box B := 1
, xIz x ... x Id ? IR should be

,
where IJEIR is

an interval :
Volume (B) = Ch(1 .) · ((F2) ... Ch(Id)

,

where 11(1) : = right endpoint - left endpoint . We want to extend this toa

class ofats which are closed under ctbl operations : complements ,
othl unions

fl intersections .

Analysis. The class of Riemann integral functions in not closed under pointwise limite ;
indeed

,
even a pointwise limit of continuous functions is typically not Riemann inheg-

1
On To

,
1)



roble
.
But the whole subject of analysis is about approximation/limits , so we would

like to extend the class of integrable functions so it becomes closed under ptwise
limits. Clealy ,

for a subset BEIRA
,

the integral of its indicator function A will

simply be Volume (B)
,

so this task subsumes the previous task about volume .

Polish spaces.

We now define a very robust class of metric spaces
Mat we will be working with

throughout and that crises naturally in analysis and related fields.

Def . A metric space IX
,

d) is called Polish if d is a complete metric (every do
Crudy requence converges) and X is reparable (i . e . there is athl dense sett.

Prop .
A metric space

X is separable e it is end ctbl
,
i
.
e
.
admite a ctbl

basis of
open sets .

Proof : HW .

Recall/bara: In a metric space X
,

a basic is a collection & of open subset of X
suc that every open set is a union (maybe unctyl) of sets in 1.

Examples of Polish spaces .

(a) IR, omoregenly,wimetic smaxi-Y
rationals are dense andathl

,
so QR

&
is dense and ctbl.

Note that open intervals with rational endpoints from a ctrl basin for IR

andUs open boxes
with rational coordinates from a otol basis for 199.



We canalso equip IRP with other equivalent omplete metrics (two metrics are
equivalent if they induce the same open sets) , namely ,

for 1 p ,

dp(, j) =1 - : (4)
One can show let up is birdipschitz equivalent to do

,

i
.

e
. there is a

constant Cp > O suc that

↳ dadp(p . do
.

In particular , the spaces (IRP
, dp) are Polish

,
for 1p=& .

It's also easy
he

see that
,
lindp = do

.

IHM

16) If(X
,
d) is a Polish metric space. then any

closed subset is still Polish will the

same metric linded ,
closednes ensures completeness of d and any subspace of

a 2nd All space is
no stbl) . What about open subsets

, say 10 , 1) in IR ?

The came metric won't work because it won't be complete ,
but maybe we can

take a different equivalent metric But is complete . Indeed , do on
IR is

complete and R looks like 10
,
1

,
in other words

, they are homeomorphic
( I I (

IR O I

Rvecancopythe completemetfromvinany homet
metric on 10 , 1 equivalent to d8 .
Such sets are called Polickable

,
and it is a theorem in descriptive set theory Let

n subset of a Polish space is Polishable it and only if it is Ge letbl inter
section of

open
sets).

(2) The space (190 ,
1) of continuous functions on 50

, 1) with uniform metric
f

is Polish.

du lf , g) : = >MayIf(x)-gl &du



Indeed
,
we know from undergrad analysis let a uniterals laudy requence of

continuous functions converges to a continuous function
,
so do is complete.

As for separability , polymonials with rational refficients form a styl dense

set (b) Weierstrass's Morem) , or more easily , piecewise lineer functions (with

finitely many pieces) with rational breakpointy form acthl dense set

NigI
11111 ,

(d) The tee-spaces : Cantor space 2 and Baire space CNN
Let A be a monemptybl ut , e . g. A :=G : = 10 , 13 or A := IN . Let X : = AI of
infinite sequences of elements of A

.

We depict A as the infinite branches through
the tree A4 := the set of finite sequences in A : P

&
a
I

001We equip AN with the metric: it
xeg
- A When

P 10

& (x , y) : = 2-AW,)
,
where Alx ,y) : = min itIN with Xi :

I
00900plo I

and d(x
,s= 0 if x = y . i

This I is includ a metric on A
,
in fact an ultrametric (HM).

AlsoI is a complete metric (HW) and for
a
fixed do A

,
the set ofuquences

which are eventually do forms abl dense set
.
Thus

,
A is Polish.

The topology of A (the set of open
sets). For <* <r > 2) ,

the open
ball

Br(x) = = 3y + A : d(y , x)(r)
= (ycam : d(y , x) = z

- 4) = Br(x)
= IytA : YIu = XIn)

,

where n = so , ..., n + 3.
= [xIn]

,

where the last term denotes the cylinder with base xIneA" .
More generally,

for a finite word weA
,
let

(w] = = <y EAN : y = w]
= 336A : Yle = wh

demote the cylinder with base w
.
Each glinder is an open

ball
,
as well as

a closed ball
,
whose center is

any element of itthe realtors' metricl.



Thus
, every open set is a union of cylinders , here the cylinders form

a ctbl basic for AN .
When working with AN

, we work with this basis.

Cylinders are clopen ,
which makes Al totalls disconnected

,
in fact

,
Orcimen-

sional .

Prop . At is compact> A is finite.

Proof
.

Uses Konig's lemma
,

HW.

I prefer A to reals IRI because A is so disconnected that it behaves

like a discrete space ,
so we can do combinatories on it

,
while still being able

to take limits.


